# **The Value of Perspective**

### Approaching nuclei through multiple perspectives and diverse models:

#### Patterns, symmetries, interactions

(Apologies for two slides from Tokyo)

## R. F. Casten Yale University and MSU-FRIB

International Symposium on Simplicity, Symmetry, and Beauty of Atomic Nuclei, in honor of Professor Akito Arima's 88 year-old Birthday

Shanghai, Sept. 26-28, 2018



Do you want to study the details of the trees? Or the beauty and symmetry of the forest? Or simplify to its essence



## The Beauty and Elegance of Nuclear Structural Evolution



Chaos to order, emergent collectivity, symmetries

Thanks to R.Burcu Cakirli for figure

# Structural evolution: Look at data from different perspectives



B(E2: 4<sup>+</sup> -- 2<sup>+</sup>)/B(E2: 2<sup>+</sup> -- 0<sup>+</sup>)



B(E2) values: complex behavior across a shell. A different perspective shows a hidden regularity and some physics



Not only regular but illustrates an interesting point?: Why is slope so constant across many structures?

SU(3) and O(6): ~1.43

Geom. Vibrator: 2.00

But U(5): 2x(N-1)/N For N = 4, this equals: 1.5 !

#### The power of different perspectives



# Different perspectives, one more example Inspired by the p-n interaction







Empirical valence p-n interactions

Empirical p-n interaction strengths indeed strongest along diagonal.

. Double difference of masses

pn

Empirical p-n interaction strengths stronger in like regions than unlike regions.



## **Nuclear Astrophysics / Nucleosynthesis**

n-capture cross sections in keV energy range key, especially for unstable nuclei

> Problem: Difficult to measure Difficult and uncertain to predict

> > Is there another way?

Put together two perspectives

# N-capture cross sections Rare earth region, 30 keV



#### Try a different perspective

Look at two neutron separation energies





### Neutron capture MACS at 30 keV vs. $S_{2n}$ (N + 2)

# Bring together 3 physicists, one who knows cross sections and two who know masses:



Use these correlations to predict unknown cross sections



 $\Delta \sigma = [S2n (N + 2)]^{9.44} \{ (4.33 \times 10^{-21}) [S_{2n} (N + 2)]^2 - (6.89 \times 10^{-20}) S_{2n} (N + 2) + 6.89 \times 10^{-19} \}$ 

# The Path to Symmetry

**Regularity out of chaos** 

→ Patterns

# $\rightarrow$ Simple interpretations

# →Geometry

Symmetries – Quantum numbers

→ Algebra

## The IBM, not too shabby!!



The value and challenge of alternate perspectives in comparing models with the data

| Comparing models<br>All give similar<br>predictions ! Why?<br>γ To Grd Rel. |                                         |    | Pure bands:<br>Sep. Intr, Rot DoF |                      |                    | Eff. mixing<br>through γ<br>using Davydov |       |          | Νο  |
|-----------------------------------------------------------------------------|-----------------------------------------|----|-----------------------------------|----------------------|--------------------|-------------------------------------------|-------|----------|-----|
|                                                                             |                                         |    |                                   |                      |                    |                                           |       |          |     |
|                                                                             |                                         |    |                                   | J <sub>initial</sub> | J <sub>final</sub> | <sup>168</sup> Er-EXP                     | Alaga | Zg=0.035 | CQF |
|                                                                             | 2 <sub>g</sub>                          | 0+ | 56.2(11)                          | 70                   | 56.9               | 54                                        | 52.9  | 64.3     |     |
|                                                                             | , i i i i i i i i i i i i i i i i i i i | 2+ | 100                               | 100                  | 100                | 100                                       | 100   | 100      |     |
|                                                                             |                                         | 4+ | 7.3(4)                            | 5                    | 7.6                | 8                                         | 8.5   | 6.3      |     |
|                                                                             |                                         |    |                                   |                      |                    |                                           |       |          |     |
|                                                                             | 3 <sub>g</sub>                          | 2+ | 100                               | 100                  | 100                | 100                                       | 100   | 100      |     |
|                                                                             | · ·                                     | 4+ | 62.6(14)                          | 40                   | 62.9               | 69                                        | 73    | 49.3     |     |
|                                                                             |                                         |    |                                   |                      |                    |                                           |       |          |     |
|                                                                             | 4 <sub>e</sub>                          | 2+ | 19.3(4)                           | 34                   | 20.2               | 18                                        | 16.4  | 28.1     |     |
|                                                                             | 5                                       | 4+ | 100                               | 100                  | 100                | 100                                       | 100   | 100      |     |
|                                                                             |                                         | 6+ | 13.1(12)                          | 8.6                  | 16                 | 16                                        | 18.7  | 12.5     |     |
|                                                                             |                                         |    |                                   |                      |                    |                                           |       |          |     |
|                                                                             | 5,                                      | 4+ | 100                               | 100                  | 100                | 100                                       | 100   | 100      |     |
|                                                                             | 5                                       | 6+ | 123(14)                           | 57.1                 | 117                | 125                                       | 147.7 | 79.6     |     |
|                                                                             |                                         |    |                                   |                      |                    |                                           |       |          |     |
|                                                                             | 6,                                      | 4+ | 11.2(10)                          | 26.9                 | 11                 | 9                                         | 7.4   | 20.3     |     |
|                                                                             | 5                                       | 6+ | 100                               | 100                  | 100                | 100                                       | 100   | 100      |     |
|                                                                             |                                         | 8+ | 37.6(72)                          | 10.6                 | 23.6               | 20                                        | 27.9  | 18       |     |



Conclusions / Congratulations, Akito

Different perspectives, simple patterns, symmetries: Have revealed so much about nuclei, influenced generations.

Do not look at nuclei (or other systems) only through your favorite paradigm, or model.

The IBM: Inspiration for half of Akito's life.

Congratulations, Akito What an amazing career, and life !!



# BACKUPS

#### Ditto – semi-log plot

