The Value of Perspective

Approaching nuclei through multiple perspectives and diverse models: Patterns, symmetries, interactions

(Apologies for two slides from Tokyo)

R. F. Casten

Yale University and MSU-FRIB
International Symposium on Simplicity, Symmetry, and Beauty of Atomic Nuclei, in honor of Professor

Akito Arima's 88 year-old Birthday
Shanghai, Sept. 26-28, 2018

Do you want to study the details of the trees? Or the beauty and symmetry of the forest? Or simplify to its essence

The Beauty and Elegance of Nuclear Structural Evolution

Chaos to order, emergent collectivity, symmetries

Structural evolution: Look at data from different perspectives

B(E2: $\left.4^{+}--2^{+}\right) / B\left(E 2: 2^{+}-0^{+}\right)$

$B(E 2)$ values: complex behavior across a shell. A different perspective shows a hidden regularity and some physics

Not only regular but illustrates an interesting point?:
Why is slope so constant across many structures?

SU(3) and O(6): ~1.43
Geom. Vibrator: 2.00
But U(5): $2 x(N-1) / N$
For $\mathbf{N}=4$, this equals:
$1.5!$

The power of different perspectives

Onset of deformation

Different perspectives, one more example

 Inspired by the p-n interaction

Experiment

Empirical valence p-n interactions

$\delta \mathbf{V}_{\mathrm{pn}}$

Double difference of

Empirical p-n interaction strengths indeed strongest along diagonal.

Empirical p-n interaction strengths stronger in like regions than unlike regions.

Locus of collectivity Collectivity and maxima in $\delta \mathrm{V}_{\mathrm{pn}}$: Essential role of the p-n interaction

Nuclear Astrophysics / Nucleosynthesis

n-capture cross sections in keV energy range key, especially for unstable nuclei

Problem: Difficult to measure Difficult and uncertain to predict

Is there another way?
Put together two perspectives

N -capture cross sections

Rare earth region, 30 keV

Try a different perspective

Look at two neutron separation energies

Neutron capture MACS at 30 keV vs. $\mathrm{S}_{2 n}(\mathrm{~N}+2)$ Bring together 3 physicists, one who knows cross sections and two who know masses:

Use these correlations to predict unknown cross sections

$\underset{1 / 2}{\Delta \sigma}=[\mathrm{S} 2 \mathrm{n}(\mathrm{N}+2)]^{9.44}\left\{\left(4.33 \times 10^{-21}\right)\left[\mathrm{S}_{2 n}(\mathrm{~N}+2)\right]^{2}-\left(6.89 \times 10^{-20}\right) \mathrm{S}_{2 n}(\mathrm{~N}+2)+6.89 \times 10^{-19}\right\}$

The Path to Symmetry

Regularity out of chaos

\rightarrow Patterns
\rightarrow Simple interpretations
\rightarrow Geometry
\rightarrow Symmetries - Quantum numbers
\rightarrow Algebra

The IBM, not too shabby!!

The value and challenge of alternate perspectives in comparing models with the data

		$B(E 2) s$		mixing	sing	Davy		No mixing.
$\mathrm{J}_{\text {initial }}$	$\mathrm{J}_{\text {final }}$	${ }^{168 E r-E X P}$	Alaga	$\mathrm{Zg}=0.035$	CQF	Proxy	PDS	Finite \mathbf{N}
2 g	0^{+}	56.2(11)	70	56.9	54	52.9	64.3	
	2^{+}	100	100	100	100	100	100	
	4^{+}	7.3(4)	5	7.6	8	8.5	6.3	
3 g	2^{+}	100	100	100	100	100	100	
	4^{+}	62.6(14)	40	62.9	69	73	49.3	
4 g	2^{+}	19.3(4)	34	20.2	18	16.4	28.1	
	4^{+}	100	100	100	100	100	100	
	6^{+}	13.1(12)	8.6	16	16	18.7	12.5	
5 g	4^{+}	100	100	100	100	100	100	
	6^{+}	123(14)	57.1	117	125	147.7	79.6	
6 g	4^{+}	11.2(10)	26.9	11	9	7.4	20.3	
	6^{+}	100	100	100	100	100	100	
	8^{+}	37.6(72)	10.6	23.6	20	27.9	18	

		$B(E 2) s$		mixing	sing	Davy		No mixing.
$\mathrm{J}_{\text {initial }}$	$\mathrm{J}_{\text {final }}$	${ }^{168} \mathrm{Er}$-EXP	Alaga	$\mathrm{Zg}=0.035$	CQF	Proxy	PDS	Finite \mathbf{N}
2 g	0^{+}	56.2(11)	70	56.9	54	52.9	64.3	
	2^{+}	100	100	100	100	100	100	
	4^{+}	7.3(4)	5	7.6	8	8.5	6.3	
3 g	2^{+}	100	100	100	100	100	100	
	4^{+}	62.6(14)	40	62.9	69	73	49.3	
4 g	2^{+}	19.3(4)	34	20.2	18	16.4	28.1	
	4^{+}	100	100	100	100	100	100	
	6^{+}	13.1(12)	8.6	16	16	18.7	12.5	
5 g	4^{+}	100	100	100	100	100	100	
	6^{+}	123(14)	57.1	117	125	147.7	79.6	
6 g	4^{+}	11.2(10)	26.9	11	9	7.4	20.3	
	6^{+}	100	100	100	100	100	100	
	8^{+}	37.6(72)	10.6	23.6	20	27.9	18	

Comparing models
All give similar predictions ! Why?

γ To Grd Rel. B(E2)s

$\begin{array}{ll}5_{g} & 4^{+} \\ & 6^{+}\end{array}$
$\begin{array}{ll}6 \mathrm{~g} & 4^{+} \\ & 6^{+} \\ & 8^{+}\end{array}$

Pure bands:
Sep. Intr, Rot DoF through γ

A word about the future:

Unstable nuclei RIBF and FRIB

Conclusions / Congratulations, Akito

Different perspectives, simple patterns, symmetries: Have revealed so much about nuclei, influenced generations.

Do not look at nuclei (or other systems) only through your favorite paradigm, or model.

The IBM: Inspiration for half of Akito's life.
Congratulations, Akito What an amazing career, and life !!

BACKUPS

Ditto - semi-log plot

